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A Note on Controlling the Number of False Positives
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Summary. Lehmann and Romano (2005, Annals of Statistics 33, 1138–1154) discuss a Bonferroni-type
procedure that bounds the probability that the number of false positives is larger than a specified number.
We note that this procedure will have poor power as compared to a multivariate permutation test type
procedure when the experimental design accommodates a permutation test. An example is given involving
gene expression microarray data of breast cancer tumors.
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1. Introduction
In many applications involving high-dimensional data, there
may be thousands of null hypotheses being considered (e.g.,
one for each of 10,000 genes), and there may be interest in
identifying which null hypotheses, if any, can be rejected.
Controlling the family-wise error rate is typically too strin-
gent a criterion, as it may lead to limited power to detect
real differences. In these cases it may be useful to limit the
number of false positives or the proportion of false positives
(false discovery proportion) with high probability (Korn et al.,
2004). (An alternative is to estimate the expected false dis-
covery proportion, which is sometimes known as the false dis-
covery rate [Benjamini and Hochberg, 1995]; see Ge, Dudoit,
and Speed [2003] and Li et al. [2005] for extensive reviews
of the false discovery rate and Korn et al. [2004] for a dis-
cussion of the differences between estimating the false discov-
ery proportion and the false discovery rate.) Lehmann and
Romano (2005) recently investigated a simple Bonferroni-
type procedure (Hommel and Hoffmann, 1988) to limit the
number of false positives, which can then also be used to de-
sign procedures to limit the proportion of false positives. The
Bonferroni-type procedure is based on univariate p-values as-
sociated with the hypotheses that are valid in the sense that

P (pi ≤ u) ≤ u for all u ∈ (0, 1) (1)

when the ith null hypothesis is true. When the null hypothe-
ses of interest can be tested with a permutation test, an al-
ternative approach is based on the reference distribution of
an appropriate order statistic of the univariate p-values using
the multivariate permutation distribution; see Westfall and
Young (1993), Korn et al. (2004), Romano and Wolf (2007),
and Section 2 below.

In this note we demonstrate that in applications where a
multivariate permutation test (MPT)-type procedure is ap-
propriate, the Bonferroni-type procedure would be expected
to have poor power as compared to the MPT-type procedure.
We focus on the two-class comparison, a simple situation in
which the MPT-type procedure is performed by permuting

the class labels between the two classes. For simplicity of pre-
sentation, we consider only single-step procedures in this ar-
ticle; in applications where only a very small proportion of
nonnull hypotheses are expected, the gains of using a multi-
step procedure are expected to be small. For example, with
s hypotheses, the nominal p-value cut-offs for the Bonferroni
procedure (α/s) and the Holm (Holm, 1979) procedure (α/
(s − i + 1) for the ith hypothesis tested) are close when s � i.
Also for simplicity, we only consider controlling the number
of false positives, as procedures that have poor power for this
objective would be expected to have poor power for control-
ling the false discovery proportion. In particular, a procedure
for controlling the number of false positives can be modified
to control approximately the false discovery proportion by
estimating the false discovery proportion as the number of al-
lowable false positives divided by the number of rejected null
hypothesis; see Korn et al. (2007).

2. Two-Class Comparison
Let x1, . . . , xn and y1, . . . , ym be s-dimensional vectors for the
observations in class 1 and 2, respectively. The Bonferroni-
type procedure uses a univariate p-value (associated with test-
ing the null hypothesis for that variable) for each of the s
variables. For example, the null hypothesis for the ith variable
may be that the two class means are the same, and the p-value
may be from a two-sample t-statistic. To ensure that k or more
false positives occur with ≤α probability, the Bonferroni-
type procedure rejects all hypotheses whose p-values are
≤kα/s. Letting s0 be the number of the s hypotheses that are
null, and N be the number of these s0 null hypotheses that
are rejected, the desired probability constraint follows from
(Hommel and Hoffmann, 1988; Lehmann and Romano, 2005)

P (N ≥ k) =
E(N)

k
−

k−1∑
i=1

iP (N = i) +

s−k∑
i=1

iP(N = k + i)

k

≤ E(N)

k
≤ α∗

ks0

k
≤ α,

,

(2)
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where α∗
k ≡ kα/s and the validity (1) of the p-values is used

for the penultimate inequality.
For the MPT procedure to ensure that k or more false posi-

tives occur with ≤α probability, let Wi be a univariate statis-
tic associated with the ith variable such that smaller values of
Wi suggest the ith null hypothesis is not true, i = 1, . . . , s. (For
the two-class comparison, we assume that the s0-dimensional
multivariate distribution of the variables associated with null
hypotheses is the same regardless of class label.) For exam-
ple, Wi could be a p-value associated with a hypothesis test,
but need not be. Consider constructing permuted datasets by
permuting the class labels, and, for each permuted dataset,
calculating the W’s on all the variables, say, W ∗

1, . . . , W
∗
s. Let

the ordered W∗’s be denoted W ∗
(1) ≤ · · · ≤ W ∗

(s), and let

cα,k = MAX
{
c |P

(
W ∗

(k) < c | {x1, . . . , xn, y1, . . . , ym}
)
≤ α

}
,

(3)

where P (• | {x1, . . . , xn , y1, . . . , ym}) refers to the probability
under the permutation distribution, and the MAX is the max-
imum over c. (The quantity cα,k is essentially the αth quantile
of W ∗

(k).) The MPT-based procedure rejects all null hypothe-
ses associated with variables i such that Wi < cα,k.

To see why this procedure satisfies the probability error
constraints, let I ⊆ {1, . . . , s} be the set of indices corre-
sponding to true null hypotheses, let W 0

(1) ≤ · · · ≤ W 0
(s0) be

the ordered W statistics on the original (unpermuted) dataset
restricted to i ∈ I, let W ∗0

(1) ≤ · · · ≤ W ∗0
(s0) be the ordered W

statistics on a permuted dataset restricted to i ∈ I, and let

c0
α,k = MAX

{
c |P

(
W ∗0

(k) < c | {x1, . . . , xn, y1, . . . , ym}
)
≤ α

}
.

Note that although c0
α,k is unknown to us, we do know that

c0
α,k ≥ cα,k because W ∗0

(k) ≥ W ∗
(k) (the {W ∗0’s} being a subset

of the {W ∗’s}). The proof that the probability that k or more
null hypothesis are rejected is ≤α is as follows:

P (k or more null hypotheses rejected)

= P (W 0
(k) < cα,k)

= E
[
P

(
W 0

(k) < cα,k | {X1, . . . , Xn, Y1, . . . , Ym}
)]

≤ E
[
P

(
W 0

(k) < c0
α,k | {X1, . . . , Xn, Y1, . . . , Ym}

)]
≤ E(α) = α.

.

For our comparison of the Bonferroni-type procedure with
the MPT-based procedure, we will assume that a p-value
from a two-sample t-test is used for each variable for the
Bonferroni-type procedure, say pi , and these same p-values as
the test statistics for the MPT-based procedure, i.e., Wi = pi ,
i = 1, . . . , s. First, consider the case when n, m → ∞ (asymp-
totic sample size case) and the global null hypothesis that
{X1, . . . ,Xn , Y 1, . . . ,Ym} independent and identically dis-
tributed from an s-dimensional continuous distribution that
has correlation matrix R and whose components have finite
absolute third moments. Let F n,m(u1, . . . , us | {X1, . . . ,Xn ,
Y 1, . . . ,Ym}) be the cumulative distribution function of
the permutation distribution of the vector of t-statistics.
Following Hoeffding (1952), F n,m(u1, . . . , us | {X1, . . . ,Xn ,
Y 1, . . . ,Ym}) converges in probability to the cumulative dis-
tribution function of a multivariate normal distribution with

mean 0 and covariance (and correlation) matrix R. The fol-
lowing theorem, whose proof is given in the Appendix, shows
that (i) we can use a multivariate normal distribution to eval-
uate the asymptotic properties of the MPT-based procedure
and that (ii) the asymptotic p-value cut-off for rejection for
the MPT-based procedure is greater than or equal Bonferroni-
type procedure.

Theorem 1: Let {X1, . . . ,Xn , Y 1, . . . ,Ym} be inde-
pendent and identically distributed from an s-dimensional
continuous distribution that has correlation matrix R and
whose components have finite absolute third moments. Let
c

(n,m)
α,k,{X1,...,Xn,Y1,...,Ym} be the cα,k defined by (3) with the explicit

notation for the sample sizes and conditioning order statistics.

(i) lim
n,m→∞

c
(n,m)
α,k,{X1,...,Xn,Y1,...,Ym}

P→ c
(∞)
α,k ≡ 2(1 − Φ(γα,k)),

where γα,k is the 1 − αth quantile of the kth largest
of |Z1 | , . . . , |Zs | , and where Z = (Z1, . . . , Zs) has a mul-
tivariate normal distribution with mean 0 and covariance
matrix R, and Φ(•) is a standard normal cumulative dis-
tribution function.

(ii) c∞α,k ≥ kα

s
.

To see how much better the power is for the MPT-based
procedure as compared to the Bonferroni-type procedure, we
conducted a simulation that would be relevant to microarray
experiments: 10,000 variables with a block diagonal correla-
tion structure with block size of 100 and correlation ρ within
the blocks. For the asymptotic sample size case, Table 1 dis-
plays the cut-offs required for the two procedures (α = 0.05)
to reject the null hypothesis for any given variable in terms of
the nominal p-value for that variable. For the Bonferroni-type

Table 1
Rejection cut-offs (×10−5) for individual variables (in terms of
nominal p-values) for two-class comparison (two-sided level =

0.05) for 10,000 variables (block correlation structure, 100
blocks with within-block correlation of ρ) allowing for 0–10
errors using a Bonferroni-type procedure and MPT-based

procedure (asymptotic results). For the MPT-based procedure,
the cut-offs were obtained by simulating 107 multivariate

normal vectors.

Number of MPT-based
allowable procedure (c∞0.05,k)
errors Bonferroni-type
(k − 1) procedure ρ = 0 ρ = 0.5

0 0.5 0.51 0.61
1 1.0 3.53 2.90
2 1.5 8.14 5.86
3 2.0 13.61 9.18
4 2.5 19.70 12.72
5 3.0 26.10 16.45
6 3.5 32.76 20.34
7 4.0 39.71 24.36
8 4.5 46.99 28.53
9 5.0 54.28 32.77
10 5.5 61.73 37.13
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Table 2
Power to reject the null hypothesis (level = 0.05) for a

variable in the two-class comparison for which
E(X̄1 − X̄2) = 5 × SD(X̄1 − X̄2) when there are 10,000
variables (block correlation structure, 100 blocks with

within-block correlation of ρ) allowing for 0–10 errors using a
Bonferroni-type procedure and MPT-based procedure

(asymptotic results).

Number of
allowable Bonferroni-type

MPT-based procedure
errors procedure
(k − 1) (%) ρ = 0 (%) ρ = 0.5 (%)

0 67 67 68
1 72 81 79
2 75 86 84
3 77 88 86
4 78 90 88
5 80 91 89
6 81 92 90
7 81 93 91
8 82 93 91
9 83 94 92
10 83 94 93

procedure, this cut-off is 0.05k/10,000, where the procedure
ensures that there are ≥k true null hypotheses rejected with
at most α probability. For the MPT-based procedure, the cut-
offs (c∞0.05,k) were determined by simulating multivariate nor-
mal distributions, although they could have been obtained for
the ρ = 0 case by solving 0.95 =

∑k−1
j=0 (

10,000
j )(1 − c)10,000−jcj

for c. Table 2 shows the power to reject a null hypothesis
for a variable whose true mean difference is five standard er-
rors, i.e., the power equals 1 − Φ(Φ−1(1 − c∞0.05,k/2) − 5). (If
one knew a priori that the correlation ρ were 0, then one could
improve on the Bonferroni-type procedure [Guo and Romano,
2007; Sarkar, 2007].)

Tables 1 and 2 demonstrate that the Bonferroni proce-
dure has reasonable power as compared to the MPT-based
procedure allowing for 0 errors (k = 1), but the Bonferroni-
type procedure has a large loss of power when allowing for
more than 0 errors (k ≥ 1). (Of course, the Bonferroni proce-
dure for 0 errors will have a substantial loss of power if the
correlation is unrealistically high. For example, if ρ = 0.9, the
power in Table 2 for k = 1 would be 81% for the MPT-based
procedure [not shown] as compared to 67% for the Bonferroni
procedure.) A heuristic explanation of why the Bonferroni-
type procedure works well (for reasonable correlation) for
k = 1 and poorly for k > 1 is as follows for k = 1 versus
k = 2. For simplicity, we assume (i) the global null hypothesis
(i.e., all null hypotheses are true), (ii) complete independence
of the variables (ρ = 0), and (iii) the p-values have uniform
distributions (i.e., a stronger assumption than (1)). From (2),
we have for k = 1

P (N ≥ 1) = α∗
1s −

s−1∑
i=1

iP(N = 1 + i)

= α −
s−1∑
i=1

iP(N = 1 + i),

and for k = 2

P (N ≥ 2) =
α∗

2s

2
−

P (N = 1) +

s−2∑
i=1

iP(N = 2 + i)

2

= α −
P (N = 1) +

s−2∑
i=1

iP(N = 2 + i)

2
.

The difference between α and the type 1 error of the Bon-
ferroni procedure (k = 1) is approximately

P (N = 2) =
s(s − 1)

2

(
α∗

1

)2(
1 − α∗

1

)s−2 ∼= α2/2,

whereas for the Bonferroni-type procedure with k = 2 it is
approximately

1

2
P (N = 1) =

1

2
sα∗

2

(
1 − α∗

2

)s−1 ∼= α − 2α2.

Compared to the target level of α, we see that the conser-
vativeness of the Bonferroni procedure (k = 1) is small (α2/2),
but the conservativeness of the Bonferroni-type procedure
(k = 2) is large (α − 2α2). This conservativeness of the level
under the global null hypothesis translates into reduced power
when there are nonnull hypotheses.

As the results in Tables 1 and 2 are asymptotic, we also con-
sider a small-sample situation with sample sizes n = 10 and
m = 5 in the two groups. A block correlation structure with
ρ = 0.5 is again used, with 190 of the normally distributed
10,000 variables nonnull with a true mean difference of 7.9
standard errors (a difference of 7.9 standard errors corre-
sponds to approximately 65% power for a Bonferroni-adjusted
t-test with 13 degrees of freedom); 10 of the blocks have 10
nonnull variables each, and the other 90 blocks each have one
nonnull variable. Table 3 displays power to reject the null hy-
pothesis for a nonnull variable and the quantiles of the distri-
bution of the number of the 190 nonnull hypotheses rejected
by the Bonferroni-type and MPT-based procedures. Allowing
for zero errors (k = 1), the Bonferroni and MPT-based pro-
cedures have similar characteristics. When more than zero
errors are allowed, the Bonferroni-type procedure results in
a substantial loss of power relative to the MPT-based proce-
dure. This loss of power seen in Table 3 is even more dramatic
than the asymptotic results given in Table 2, e.g., 75% ver-
sus 88% for k = 2 (Table 3) and 72% versus 79% for k =
2 (Table 2). The advantage of the MPT-based procedure is
also seen by the marked increase in the number of the re-
jected nonnull hypothesis, e.g., median 167 versus 142 for k =
2. Small-sample properties of the methods are discussed ad-
ditionally below.

3. An Example
Sotiriou et al. (2003) analyzed cDNA gene expression pro-
files from 99 tumor specimens from breast cancer patients.
In addition to gene expression values for 7650 genes (probes)
preprocessed as described in Sotiriou et al. (2003), there was
standard prognostic variable information available for each
patient. (The data are publicly available at http://linus.

nci.nih.gov/∼brb/DataArchive.html.) Here we consider
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Table 3
Simulated distributional properties of the number of nonnull hypotheses rejected (α = 0.05) in a

two class comparison (n = 10, m = 5) when there are 10,000 variables (block correlation
structure, 100 blocks with within-block correlation of ρ = 0.5) with 190 nonnull variables (see

text) allowing for 0–6 errors using a Bonferroni-type procedure and MPT-based procedure (2000
simulated datasets)

Bonferroni-type procedure MPT-based procedure
Number of
allowable errors First Third First Third
(k − 1) Powera quartile Median quartile Powera quartile Median quartile

0 0.655 117 123 129 0.665 118 125 131
1 0.747 137 142 148 0.879 163 167 171
2 0.800 147 152 157 0.932 175 178 181
3 0.839 153 158 163 0.959 180 183 185
4 0.858 158 163 167 0.970 183 185 187
5 0.875 162 166 170 0.977 185 186 188
6 0.886 165 169 173 0.983 186 187 188

aPower to reject the null hypothesis for a nonnull variable.

two two-class comparisons based on parametric two-sample
t-tests and control for the number of false positive at the
α ≤ 0.05 level. For each comparison, we restrict attention
to genes for which the number of missing values was less than
the number of specimens in the class with fewer observations
minus 2.

The first comparison is for patients with grade 1 or 2 tu-
mors (n = 54) versus patients with grade 3 tumors (m =
45) with s = 7498 genes. Allowing for no errors (k = 1),
Bonferroni identifies three genes and the MPT-based pro-
cedure identifies six genes. However, allowing for 10 errors
(k = 11), the Bonferroni-type procedure identifies 28 genes
and the MPT-based method identifies 94 genes. An interest-
ing gene found by the MPT-based procedure and not by the
Bonferroni-type procedure is BUB1, whose gene expression
has been previously associated with survival in breast cancer
patients (Glinsky, Berezovska, and Glinskii, 2005).

The second comparison is for patients with estrogen recep-
tor negative status (n = 34) versus patients with estrogen
receptor positive status (m = 65) with s = 7470 genes. Al-
lowing for no errors (k = 1), Bonferroni identifies 163 genes
and the MPT-based procedure identifies 172 genes. However,
allowing for 10 errors (k = 11), the Bonferroni-type procedure
identifies 290 genes and the MPT-based method identifies 503
genes. Two interesting genes found in the 503 gene set but not
in the 290 gene set are TSG101 and BAP1. TSG101 represses
transcriptional activation by estrogen receptor (Sun et al.,
1999), and BAP1 may be a breast cancer tumor suppressor
gene (Jensen et al., 1998).

4. Discussion
In addition to the lower power as compared to the MPT-
based procedure, a severe limitation of the Bonferroni-type
method is that it requires a valid univariate p-value for each
hypothesis test in the sense of (1). In particular, for p-values
derived from parametric tests this is a challenge for very
small u (Ringwald, 1983). For example, a small amount of

nonnormality in the x and y data will lead to a violation of
(1) for very small u for a t-test derived p-value unless the
sample sizes are extremely large. In particular, if a normal
critical value corresponding to a 10−5 two-sided p-value was
incorrectly used instead of a t-distribution with 100 degrees
of freedom, then the actual rejection probability would be
2.5 × 10−5, far from the nominal level. An approach to avoid
this problem is to use p-values from univariate permutation
tests, e.g., the Wilcoxon-rank sum test for the two-class com-
parison. Although these p-values will satisfy (1), they unfor-
tunately lead to a Bonferroni-type procedure with very little
power unless the sample sizes are moderately large. For ex-
ample, for a two-class comparison with n = 10 and m = 5,
the smallest (two-sided) p-value obtainable from a rank test
is 6.66×10−4, leading to no possible rejection for reasonably
sized k and s = 10,000 variables.

The MPT-based procedure does not require (1) to hold for
the procedure to be valid. In fact, any univariate statistic can
be used, not necessarily a p-value. The choice of the statis-
tic can obviously affect the power of the procedure, so we
generally recommend using p-values from parametric tests.
The MPT-based procedure is restricted to experimental de-
signs that accommodate a permutation test. Fortunately, this
covers many practical applications: paired or unpaired two-
class comparisons, k-class comparisons, simple linear regres-
sion, simple logistic regression, and survival analysis with one
independent variable. For situations in which a permutation
test cannot be directly used, e.g., testing one independent
variable in a multiple linear regression, one might attempt to
obtain the required reference distribution by bootstrapping
the data vectors rather than permuting them under a null
model. Unfortunately, the properties of bootstraps with high-
dimensional data are unpredictable unless the sample sizes
are extremely large (Troendle, Korn, and Mcshane, 2004). We
believe a more promising approach is to use an approximate
permutation test based on permuting the residuals; this is an
area of further research.
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Appendix

Proof of the Theorem 1

(i) The cumulative distribution function of an order statis-
tic can be written in terms of a linear combination of
the associated multivariate cumulative distribution func-
tion. Therefore, in particular, c

(n,m)
α,k,{X1,...,Xn,Y1,...,Ym} is

the maximum (over c) for which 1 − α is less than
a linear combination of F n,m(u1, . . . , us | {X1, . . . ,Xn ,
Y 1, . . . ,Ym}) for various values of (u1, . . . , us) that are
each equal to t−1

n+m−2 (1 − c/2) or ∞, where t−1
n+m−2 (•) is

the inverse cumulative distribution function of a t distri-
bution with n + m − 2 degrees of freedom. For example,
for k = 1,

c
(n,m)
α,1,{X1,...,Xn,Y1,...,Ym}

= MAX
{
c |Fn,m

(
t−1
n+m−2(1− c/2), . . . , t−1

n+m−2(1− c/2)|

{X1, . . . , Xn, Y1, . . . , Ym}
)

> 1 − α
}
.

The result follows by taking the limit as n, m → ∞.
(ii) Let (Z1, . . . , Zs) have a multivariate normal distribu-

tion with mean 0 and covariance matrix R, and let
p(k) be the kth smallest value of 2[1 − Φ (Zi )], i =
1, . . . , s. Then, restating (2), P (p(k) < kα

s
) ≤ α (for any

n and m). Taking the limit of this quantity, one has
limn,m→∞ P (p(k) < kα

s
) = d ≤ α. Because the distribu-

tion of the p(k) is continuous, the result follows by con-
tradiction by noting limn,m→∞ P (p(k) < c∞α,k) = α.


